|
Sistemas de Archivos

FAT
FAT es con diferencia el sistema de archivos más simple de aquellos compatibles con Windows NT. El sistema de archivos FAT se caracteriza por la tabla de asignación de archivos (FAT), que es realmente una tabla que reside en la parte más "superior" del volumen. Para proteger el volumen, se guardan dos copias de la FAT por si una resultara dañada. Además, las tablas FAT y el directorio raíz deben almacenarse en una ubicación fija para que los archivos de arranque del sistema se puedan ubicar correctamente.
Un disco con formato FAT se asigna en clústeres, cuyo tamaño viene determinado por el tamaño del volumen. Cuando se crea un archivo, se crea una entrada en el directorio y se establece el primer número de clúster que contiene datos. Esta entrada de la tabla FAT indica que este es el último clúster del archivo o bien señala al clúster siguiente.
La actualización de la tabla FAT es muy importante y requiere mucho tiempo. Si la tabla FAT no se actualiza con regularidad, podría producirse una pérdida de datos. Requiere mucho tiempo porque las cabezas lectoras de disco deben cambiar de posición y ponerse a cero en la pista lógica de la unidad cada vez que se actualiza la tabla FAT.
No hay ninguna organización en cuanto a la estructura de directorios de FAT, y se asigna a los archivos la primera ubicación libre de la unidad. Además, FAT solo es compatible con los atributos de los archivos de almacenamiento, del sistema, ocultos y de solo lectura.
FAT utiliza la convención de nomenclatura tradicional 8.3 y todos los nombres de archivo deben crearse con el conjunto de caracteres ASCII. El nombre de un archivo o directorio puede tener ocho caracteres de longitud, después un separador de punto (.) y una extensión de hasta tres caracteres. El nombre debe empezar con una letra o un número y puede contener cualquier carácter excepto los siguientes:
Si se utiliza cualquiera de estos caracteres, pueden producirse resultados inesperados. El nombre no puede contener espacios en blanco.
Los nombres siguientes están reservados:
CON, AUX, COM1, COM2, COM3, COM4, LPT1, LPT2, LPT3, PRN, NUL
Todos los caracteres se convertirán a mayúsculas.
HPFS
El sistema de archivos HPFS se presentó por primera vez con OS/2 1.2 para permitir un mejor acceso a los discos duros de mayor tamaño que estaban apareciendo en el mercado. Además, era necesario que un nuevo sistema de archivos ampliara el sistema de nomenclatura, la organización y la seguridad para las crecientes demandas del mercado de servidores de red. HPFS mantiene la organización de directorio de FAT, pero agrega la ordenación automática del directorio basada en nombres de archivo. Los nombres de archivo se amplían hasta 254 caracteres de doble byte. HPFS también permite crear un archivo de "datos" y atributos especiales para permitir una mayor flexibilidad en términos de compatibilidad con otras convenciones de nomenclatura y seguridad. Además, la unidad de asignación cambia de clústeres a sectores físicos (512 bytes), lo que reduce el espacio perdido en el disco.
En HPFS, las entradas de directorio contienen más información que en FAT. Además del archivo de atributos, esto incluye información sobre la fecha y la hora de modificación, de creación y de acceso. En lugar de señalar al primer clúster del archivo, en HPFS las entradas del directorio señalan a FNODE. FNODE puede contener los datos del archivo, o bien punteros que pueden señalar a datos del archivo o a otras estructuras que, a su vez, señalarán a datos del archivo.
HPFS intenta asignar, en la medida de lo posible, la mayor cantidad de datos de un archivo en sectores contiguos. Esto se hace con el fin de aumentar la velocidad al realizar el procesamiento secuencial de un archivo.
HPFS organiza una unidad en una serie de bandas de 8 MB y, siempre que sea posible, un archivo estará contenido dentro de una de estas bandas. Entre cada una de estas bandas hay mapas de bits de asignación de 2 KB, que hacen un seguimiento de los sectores dentro de una banda que se han asignado y que no se han asignado. La creación de bandas aumenta el rendimiento porque el cabezal de la unidad no tiene que volver a la parte superior lógica (normalmente el cilindro 0) del disco, sino al mapa de bits de asignación de banda más cercano, para determinar dónde se almacenará un archivo.
Además, HPFS incluye un par de objetos de datos especiales únicos:
Superbloque
El superbloque se encuentra en el sector lógico 16 y contiene un puntero al FNODE del directorio raíz. Uno de los mayores peligros de utilizar HPFS es que si el superbloque se pierde o resulta dañado debido a un sector defectuoso, lo mismo ocurrirá con el contenido de la partición, incluso aunque el resto de la unidad esté bien. Sería posible recuperar los datos de la unidad copiando todo a otra unidad con un sector 16 en buen estado y volviendo a generar el superbloque. Sin embargo, es una tarea muy compleja.
Bloque de reserva
El bloque de reserva se encuentra en el sector lógico 17, y contiene una tabla de "revisiones" y el bloque de directorio de reserva. En HPFS, cuando se detecta un sector defectuoso, la entrada de las "revisiones" se utiliza para señalar lógicamente a un sector en buen estado existente en lugar de al sector defectuoso. Esta técnica para el tratamiento de errores de escritura se conoce como revisión.
La revisión es una técnica en la que si se produce un error debido a un sector defectuoso, el sistema de archivos mueve la información a otro sector diferente y marca el sector original como no válido. Todo ello se realiza de forma transparente para cualquier aplicación que esté realizando operaciones de E/S de disco (es decir, la aplicación nunca sabe que hubo problemas con el disco duro). Al utilizar un sistema de archivos que admite revisiones, se eliminarán mensajes de error como el de FAT "¿Desea interrumpir, reintentar o cancelar?" que aparece cuando se encuentra un sector defectuoso.
Nota: la versión de HPFS incluida con Windows NT no admite revisiones.
NTFS
Desde el punto de vista de un usuario, NTFS sigue organizando los archivos en directorios que, al igual que ocurre en HPFS, se ordenan. Sin embargo, a diferencia de FAT o de HPFS, no hay ningún objeto "especial" en el disco y no hay ninguna dependencia del hardware subyacente, como los sectores de 512 bytes. Además, no hay ninguna ubicación especial en el disco, como las tablas de FAT o los superbloques de HPFS.
Los objetivos de NTFS son proporcionar lo siguiente:
- Confiabilidad, que es especialmente deseable para los sistemas avanzados y los servidores de archivos
- Una plataforma para tener mayor funcionalidad
- Compatibilidad con los requisitos de POSIX
- Eliminación de las limitaciones de los sistemas de archivos FAT y HPFS
Confiabilidad
Para garantizar la confiabilidad de NTFS, se trataron tres áreas principales: posibilidad de recuperación, eliminación de errores graves de un único sector y revisiones.
NTFS es un sistema de archivos recuperable porque hace un seguimiento de las transacciones con el sistema de archivos. Cuando se ejecuta un comando CHKDSK en FAT o HPFS, se comprueba la coherencia de los punteros dentro del directorio, la asignación y las tablas de archivos. En NTFS se mantiene un registro de transacciones con estos componentes de forma que CHKDSK solo tenga que deshacer las transacciones hasta el último punto de confirmación para recuperar la coherencia dentro del sistema de archivos.
En FAT o en HPFS, si se produce un error en un sector que es la ubicación de uno de los objetos especiales del sistema de archivos, se producirá un error de un único sector. NTFS evita esto de dos maneras: en primer lugar, no utilizando objetos especiales en el disco, efectuando el seguimiento de todos los objetos del disco y protegiéndolos. En segundo lugar, en NTFS se mantienen varias copias (el número depende del tamaño del volumen) de la tabla maestra de archivos.
De manera similar a las versiones OS/2 de HPFS, NTFS admite revisiones.
Mayor funcionalidad
Uno de los principales objetivos de diseño de Windows NT en cada nivel es proporcionar una plataforma a la que se pueda agregar e integrar funciones, y NTFS no es ninguna excepción. NTFS proporciona una plataforma enriquecida y flexible que pueden utilizar otros sistemas de archivos. Además, NTFS es totalmente compatible con el modelo de seguridad de Windows NT y admite varias secuencias de datos. Ya no es un archivo de datos en una única secuencia de datos. Por último, en NTFS un usuario puede agregar a un archivo sus propios atributos definidos por él mismo.
Compatibilidad con POSIX
NTFS es el sistema de archivos compatible que mejor se adhiere a POSIX.1, ya que cumple los requisitos siguientes de POSIX.1:
Nomenclatura con distinción entre mayúsculas y minúsculas:
En POSIX, LÉAME.TXT, Léame.txt y léame.txt son todos archivos diferentes.
Marca de tiempo adicional:
La marca de tiempo adicional proporciona la hora a la que se tuvo acceso al archivo por última vez.
Vínculos físicos:
Un vínculo físico se produce cuando dos nombres de archivo diferentes, que pueden estar en directorios diferentes, señalan a los mismos datos.
Eliminación de limitaciones
En primer lugar, NTFS ha aumentado considerablemente el tamaño de los archivos y los volúmenes, de forma que ahora pueden tener hasta 2^64 bytes (16 exabytes o 18.446.744.073.709.551.616 bytes). NTFS también ha vuelto al concepto de clústeres de FAT para evitar el problema de HPFS de un tamaño de sector fijo. Esto se hizo porque Windows NT es un sistema operativo portátil y es probable que se encuentre tecnología de disco diferente en algún lugar. Por tanto, se consideró que quizás 512 bytes por sector no fuera siempre un valor adecuado para la asignación. Para lograrlo, se permitió definir el clúster como múltiplos del tamaño de asignación natural del hardware. Por último, en NTFS todos los nombres de archivo se basan en Unicode, y los nombres de archivo 8.3 se conservan junto con los nombres de archivo largos.
EXT3
Básicamente, el sistema de archivos ext3 es una versión mejorada de ext2. Las mejoras introducidas proporcionan las siguientes ventajas:
- Disponibilidad
-
Tras un corte eléctrico o una caída inesperada del sistema (también se denomina cierre no limpio del sistema), se debe comprobar con el programa e2fsck cada sistema de archivos ext2 montado en la máquina para ver si es consistente. El proceso de comprobación lleva mucho tiempo y puede prolongar el tiempo de arranque del sistema de un modo significativo, especialmente si hay grandes volúmenes que contienen un elevado número de archivos. Durante este proceso, no se puede acceder a los datos de los volúmenes.
Con la característica journaling del sistema de archivos ext3 ya no es necesario realizar este tipo de comprobación en el sistema de archivos después de un cierre no limpio del sistema. En el sistema ext3, únicamente se realiza una comprobación de consistencia en los casos puntuales en los que se producen determinados errores de hardware, como, por ejemplo, fallos en el disco duro. El tiempo empleado para recuperar un sistema de archivos ext3 tras un cierre no limpio del sistema no depende del tamaño del sistema de archivos ni del número de archivos, sino del tamaño del journal (diario), utilizado para mantener la consistencia en el sistema. Por defecto, la recuperación del tamaño del "journal" tarda alrededor de un segundo, según la velocidad del hardware.
- Integridad de los datos
-
El sistema de archivos ext3 proporciona una integridad superior de los datos si se produce un cierre no limpio del sistema. El sistema de archivos ext3 le permite seleccionar el tipo y el nivel de protección de los datos. Por defecto, los volúmenes ext3 son configurados para mantener un nivel de consistencia de los datos elevado en relación con el estado del sistema de archivos.
- Velocidad
-
El sistema de archivos ext3, aparte de permitir escribir datos más de una vez, en la mayoría de los casos tiene un rendimiento superior al que proporciona ext2 porque los "journals" de ext3 optimizan el movimiento de los cabezales de los discos duros. Se pueden seleccionar tres modos de journaling para optimizar la velocidad, pero, como contrapartida, la integridad de los datos se verá afectada.
- Fácil transición
-
La migración de ext2 a ext3 es muy sencilla y se pueden aprovechar las ventajas de un sólido sistema de archivos con journaling sin tener que volver a dar formato al sistema.

|